The term
Ancien Regime refers to the old measures from the system of Charlemagne i.e. these measures were used before French Revolution of 1789. On of the problems was that units varied from one region to another, subdivisions were irregular (suffered regional variation) which resulted in complications of business transactions. The French (Ancien Regime) units that were used to measure volume (capcity) occupied with liquid materials were: muid, feuillette, quartaut, velte, pot, pinte, chopine, demi-setier, posson, demi-posson, and roquille. The largest unit was muid where 1 [muid] is equal to 288 [pinte] or 0.274218048 [\(\mathrm{m}^3\)]. The smallest unit was roquille where 1 [roquille] is equl to 0.03125 [pinte] or 0.0000297545625 [\(\mathrm{m}^3\)]. The 1 [pinte] or 0.000952146[\(\mathrm{m}^3\)].
muid |
feuillette |
quartaut |
velte |
pot (quade, cade) |
pinte (pint) |
chopine (setier) |
demi-setier |
posson |
demi-posson |
roquille |
1 |
2 |
4 |
36 |
144 |
288 |
576 |
1152 |
2304 |
4608 |
9216 |
$$\frac{1}{2}$$ |
1 |
2 |
18 |
72 |
144 |
288 |
576 |
1152 |
2304 |
4608 |
$$\frac{1}{4}$$ |
$$\frac{1}{2}$$ |
1 |
9 |
36 |
72 |
144 |
288 |
576 |
1152 |
2304 |
$$\frac{1}{36}$$ |
$$\frac{1}{18}$$ |
$$\frac{1}{9}$$ |
1 |
4 |
8 |
16 |
32 |
64 |
128 |
256 |
$$\frac{1}{144}$$ |
$$\frac{1}{72}$$ |
$$\frac{1}{36}$$ |
$$\frac{1}{4}$$ |
1 |
2 |
4 |
8 |
16 |
32 |
64 |
$$\frac{1}{288}$$ |
$$\frac{1}{144}$$ |
$$\frac{1}{72}$$ |
$$\frac{1}{8}$$ |
$$\frac{1}{2}$$ |
1 |
2 |
4 |
8 |
16 |
32 |
$$\frac{1}{576}$$ |
$$\frac{1}{288}$$ |
$$\frac{1}{144}$$ |
$$\frac{1}{16}$$ |
$$\frac{1}{4}$$ |
$$\frac{1}{2}$$ |
1 |
2 |
4 |
8 |
16 |
$$\frac{1}{1152}$$ |
$$\frac{1}{576}$$ |
$$\frac{1}{288}$$ |
$$\frac{1}{32}$$ |
$$\frac{1}{8}$$ |
$$\frac{1}{4}$$ |
$$\frac{1}{2}$$ |
1 |
2 |
4 |
8 |
$$\frac{1}{2304}$$ |
$$\frac{1}{1152}$$ |
$$\frac{1}{576}$$ |
$$\frac{1}{64}$$ |
$$\frac{1}{16}$$ |
$$\frac{1}{8}$$ |
$$\frac{1}{4}$$ |
$$\frac{1}{2}$$ |
1 |
2 |
4 |
$$\frac{1}{4608}$$ |
$$\frac{1}{2304}$$ |
$$\frac{1}{1152}$$ |
$$\frac{1}{128}$$ |
$$\frac{1}{32}$$ |
$$\frac{1}{16}$$ |
$$\frac{1}{8}$$ |
$$\frac{1}{4}$$ |
$$\frac{1}{2}$$ |
1 |
2 |
$$\frac{1}{9216}$$ |
$$\frac{1}{4608}$$ |
$$\frac{1}{2304}$$ |
$$\frac{1}{256}$$ |
$$\frac{1}{64}$$ |
$$\frac{1}{32}$$ |
$$\frac{1}{16}$$ |
$$\frac{1}{8}$$ |
$$\frac{1}{4}$$ |
$$\frac{1}{2}$$ |
1 |
All Ancien Regime volume (capacity) units converted to pinte and than to \(m^3\) in mathematical form are given below.
\begin{eqnarray}
1 [\mathrm{muid}] &=& 288 [\mathrm{pinte}] = 288 \cdot 0.000952146 [\mathrm{m}^3] = 0.274218048 [\mathrm{m}^3]\\
1 [\mathrm{feuillette}] &=& 144 [\mathrm{pinte}] = 144 \cdot 0.000952146 [\mathrm{m}^3] = 0.137109024[\mathrm{m}^3]\\
1 [\mathrm{quartaut}] &=& 72 [\mathrm{pinte}] = 72 \cdot 0.000952146 [\mathrm{m}^3] = 0.068554512 [\mathrm{m}^3]\\
1 [\mathrm{velte}] &=& 8 [\mathrm{pinte}] = 8 \cdot 0.000952146 [\mathrm{m}^3] = 0.007617168 [\mathrm{m}^3]\\
1 [\mathrm{pot}] &=& 2 [\mathrm{pinte}] = 2 \cdot 0.000952146 [\mathrm{m}^3] = 0.001904292 [\mathrm{m}^3]\\
1 [\mathrm{pinte}] &=& 1 [\mathrm{pinte}] = 1 \cdot 0.000952146 [\mathrm{m}^3] = 0.000952146 [\mathrm{m}^3]\\
1 [\mathrm{chopine}] &=& 0.5 [\mathrm{pinte}] = 0.5 \cdot 0.000952146 [\mathrm{m}^3] = 0.000476073 [\mathrm{m}^3]\\
1 [\mathrm{demi-setier}] &=& 0.25 [\mathrm{pinte}] = 0.25 \cdot 0.000952146 [\mathrm{m}^3] = 0.0002380365 [\mathrm{m}^3]\\
1 [\mathrm{posson}] &=& 0.125 [\mathrm{pinte}] = 0.125 \cdot 0.000952146 [\mathrm{m}^3] = 0.00011901825 [\mathrm{m}^3]\\
1 [\mathrm{demi-posson}] &=& 0.0625 [\mathrm{pinte}] = 0.0625 \cdot 0.000952146 [\mathrm{m}^3] = 0.000059509125 [\mathrm{m}^3]\\
1 [\mathrm{roquille}] &=& 0.03125 [\mathrm{pinte}] = 0.03125 \cdot 0.000952146 [\mathrm{m}^3] = 0.0000297545625[\mathrm{m}^3]
\end{eqnarray}
No comments:
Post a Comment